Monthly Archives: August 2016

EDET678 Funding Proposal Screencast-O-Matic Parts I and II Links

Aleta May

EDET678

Part I of the Emerging includes a proposal that serves to define why it is important for schools and other stakeholders to invest in our technologies that challenge our students and go beyond computer programs designed only to instruct without much interaction:

Screencast-O-Matic Link for this presentation:

http://screencast-o-matic.com/watch/cDj6rYi7wh

Part II of the Screencast-O-Matic presentation demonstrates how an Understanding by Design two week unit can serve to connect what students are learning when they use Arduino Electrical Circuitry (as one example) to the Alaska State Technology goals and standards, as well as to endless examples of content area standards that may be met by using Arduino.  In the unit I have written–students are studying middle school or older electric circuitry in physics as they learn to use coding in technology for future career goals.

Screencast-O-Matic URL for UbD unit lesson:

Link embed for Screencast-O-Matic UbD unit lesson:

http://screencast-o-matic.com/watch/cDj6rCi7xn

EDET 677 Final Project Club Planning Document Rubric

Aleta May

EDET 677 Mechanics of Technology

August 2016 Final Project for Dr. Lee Graham

Club Planning Document Rubric

“The mission of the Lower Kuskokwim School District (LKSD) is to ensure bilingual, culturally appropriate and effective education for all students, thereby providing them with the opportunity to be responsible, productive citizens.” http://www.lksd.org/lksd/

Technology has a 2016-2019 Technology Plan Timeline:

The section that draws my attention the most is B. Technology Integration. We need broadband width / speed, etc, but it is vital that we begin integrating technology into students’ everyday curriculum by learning, and bravely “jumping in” as teachers. The School district mission points out the words opportunity, responsible, and productive citizens. Technology Integration for self confidence in our 21st Century goals for careers and in our students’ confidence to make their place well in this world.

2016-2019 Technology Plan Timeline
A. Goals. Standards, and Strategies
Plan Element Task Responsible Party Funding Source Completion Date
Internet Access Evaluation of Network District Technology Needs (Bandwidth) Technology Coordinator TAI Department TAI Budget October 30, 2016
Continue E-rate Process (Contract Expires June 30, 2017) Technology Coordinator TAI Budget Pending E-rate Deadlines
VTC Evaluation of VTC Infrastructure VTC Equipment, Bandwidth Technology Coordinator TAI VTC Team TAI Budget August 28, 2015
Evaluation of VTC Instructor’s Needs Instructor Comments/Concerns Technology Coordinator TAI VTC Team
VTC Instructors
TAI Budget General Fund August 1, 2015- December 15, 2015
PD Technology Coordinator District PD Coordinator TAI Budget General Fund January 15, 2016
B. Technology Integration
Readiness Ensure Completion of Above Task Technology Coordinator TAI Budget January 15, 2016
Collaboration Creation of the Technology Advisory Committee Technology Coordinator TAI Budget January 15, 2016
Needs Assessment Survey Technology Coordinator TAI Budget December 15, 2015
Collaboration With Content Experts Technology Coordinator DAPS Department TAI Budget General Fund December 15, 2015
Timeline Technology Plan Timeline Technology Coordinator TAI Budget January 15, 2016
Technology Integration Technology Coordinator TAI Budget January 15, 2016
Technology Standards Tied to Core Technology Coordinator TAI Budget January 15, 2016
Standards
C. Access
Fund Use E-rate/NSLP Survey Data Collection Technology Coordinator
Site Administrators/ Site Staff
TAI Budget Site Budget October 1, 2015
E-rate/NSLP Survey Data Compilation Technology Coordinator TAI Budget October 31, 2015
Budget Inventory Analysis Technology Coordinator Assistant Superintendent Business Manager TAI Budget General Fund January 15, 2016
Parental/Community Communication and Involvement Stakeholder Surveys Technology Coordinator TAI Budget January 15, 2016
Community VTC Technology Coordinator TAI VTC Team TAI Budget January 15, 2016
Social Networking Tools Technology Coordinator Technology Integration Specialist TAI Budget General Fund January 15, 2016
Expenditures E-rate Funds BIA Analysis Technology Coordinator TAI Budget October 31, 2015
D. Professional Development
PD Plan Core Curriculum PD District PD Coordinator General Fund January 15, 2016
Technology PD Technology Coordinator Technology Integration Specialist TAI Budget General Fund January 15, 2016
Technology Integration Across Content Areas Core Content/ Technology Integration Technology Coordinator Core Content Experts Technology Integration Specialist TAI Budget General Fund January 15, 2016
E. Assessment
District Assessment District Report Card
Previous 3-years to Reflect Changes
Technology Coordinator Testing Coordinator TAI Budget General Fund January 15, 2016
Maintenance of Evaluation of Network Technology Coordinator TAI Budget October 30, 2016
Equipment and Hardware District Technology Needs (Bandwidth), VTC Needs, Etc… TAI Department
G. CIPA
E-Rate Compliance Social Networking Presence LKSD Website Presence Classroom Presence Technology Coordinator Technology Integration Specialist
TAI Department
TAI Budget General Fund Site Budget January 15, 2016
Internet Safety Policy Internet Safety Policy Review Meeting #1 Technology Coordinator Technology Integration Specialist
Technology Advisory Committee
TAI Budget General Fund September 30, 2015
Internet Safety Policy Review Meeting #2 Technology Coordinator Technology Integration Specialist
Technology Advisory Committee
TAI Budget General Fund November 30, 2015
Internet Safety Policy Final Review Technology Coordinator Technology Integration Specialist
Technology Advisory Committee
TAI Budget General Fund January 15, 2016
Public Notice and Hearing Internet Safety Policy Public Hearing LKSD School Board LKSD Board Funds TAI Budget General Fund January Board Meeting
Submission to EED 2016-2019 Technology Plan Technology Coordinator TAI Budget Pending State Deadline

Evaluating the innovation of Technology Purchase, Equity and Integration

 One way to know some of these goals have been met is not by using a check off list, rather embedding the use of technology into instruction. Serena Pariser “wanted her middle school students to have deeper dialogues about literature. She tested two different tools to support small-group conversations: TodaysMeet and Padlet” (Pollock, p. 43). With TodaysMeet, students typed contributions about the novel they were reading rather than talking face to face. In Padlet, students brainstormed and typed their responses simultaneously onto the screen. This in particular encouraged students to talk about the comments in their small groups immediately. Students could also use iPads to see each other’s thinking. “Tech use supports what students are learning rather than usage being the end goal itself (2016, Pollock, p. 43). Equity does not mean an equivalent device in every student’s hand, it means smart use of technology.

“ 1. What’s your equity vision for students in your classroom?

2. What tech did you experiment with to see if it could help achieve that visio?

3.  What did you do with your students to test that use of technology and how did it go?     (Show the pros and cons for students.)

4.  What’s your conclusion about how ‘smart’ that tech use was for achieving your equity vision?” (Pollock, 2016, p. 42).

Asking myself and other educators, these questions is a quality template for evaluating our innovations.

To organize the beginning of our makerspace at Lewis Angapak Memorial School (LAMS), I am using questions from Jennifer Cooper, Sept. 30, 2013.

When will the space be used? and Where in the school would be ideal? What considerations are important?

The Makerspace will be during school, in the library, my small room, and in classrooms. More questions proposed by Cooper (2013) are questions I ask as I plan a during school club for our school:

What range of “subjects’ will be taught in the space? What types of activities and projects could be done there?

This needs to be left up to teachers’ imagination as to what is needed to make connections between making and the standards they are making in class.

Which tools are most needed? Will digital fabrication tools such as CNC routers, laser cutters or 3D printers be included? Which materials will be used?

I believe the priority is 3D printers and electronic kits. Woodworking routers sound great as well; we will need newer models to assure safety guards are in place.

Who are the kids that will be using the space? Will others use the space as well? Who is staffing and managing the space?—This question speaks volumes to me about keeping the makerspace student-centered:

Eight Big Ideas Behind the Constructionist Learning Lab

Statements extracted, from Dr. Seymour Papert’s big ideas that support the atmosphere in the design of my makerspace:

  1. “We learn best of all when we use what we learn to make something we really want.”
  2. If you can use technology to make things, you can make a lot more interesting things.
  3. “…fun and enjoying doesn’t mean ‘easy.’ The best fun is hard fun.”
  4. “Many students get the idea that ‘the only way to learn is by being taught.’ . . . You have to take charge of your own learning.”
  5. “To do anything important you have to learn to manage time for yourself. This is the hardest lesson for many of our students.”
  6. “The only way to get it right is to look carefully at what happened when it went wrong.”
  7. “The best lesson we can give our students is to let them see us struggle to learn.”
  8. “. . . learning about computers is essential . . . BUT the most important purpose is using them NOW to learn about everything else” (Stager, 2006 in Martinez & Stager, 2013).

How will it be built? Is a new or separate structure needed, and if so what type? What is the budget? Will the design and construction team be a combination of contractor and volunteers, all-volunteer or fully contracted?

This will happen by work order with our maintenance staff. Although this is embedded in the school budget, they have many tasks to complete.

More items to budget for are based on these facts: In Spencer & Juliani, (2016), a great way of reasoning as to why students will not stay on the same projects; particularily as they get older and more diverse in interests, skills, abilities, mindset, etc.; was to ask, “Why have the same training when everyone is on different levels?” (p. 29). The Industrial Arts teacher who was quoted started developing a new class titled “Creative Design and Engineering” (p. 29). Because of this, I can visualize many tools and materials, organized into areas like electronics, but with a sewing machine (with heavy duty needles for metallic conductive threads) nearby for designing fabrication with LED lights.

Accessible to the fabric and sewing area, there would be a 3D copier corner that may require “borrowing” certain types of metal thread, from the electronics section, for binding together clothing pieces created on the 3D machine that used a plastic type of filament. Overlapping these areas will be materials used to create classy curtains, and a fabric steamer to watch the effects of steam as wrinkles are released—then ask, “Why does this work?” Next to this area is a “LilyPad Arduino, an electronic textile construction it” (Telhan, Kafai, & Litts, 2016, p. 232) that activates through sensors and human touch and can be used on felt fabric. Students could experiment by connecting circuits “by incorporating conductive patches into the sleeve’s end” (p.228) for a fun way to study how electricity conducts through different types of metal threads/tapes.

Another section would be set up with a variety of regular school supplies that are in easy reach. Items include scissors, a variety of tapes, markers of different types, colored and drawing pencils and sketch paper; brass fasteners, clips, clamps, staplers, and glue. Paints that include oils, watercolors, tempra, and a small spray-paint compressor for larger temporary displays. The point here is to include sections that inspire the artistic senses as students use their imaginations to represent their thinking that is usually tied to a classroom project, standard, or other goal.

Another area, likely upstairs, would be set up for repairing or remixing old bicycles around the village. There would be a water area for finding air leaks and figuring out why certain tire patch adhesives work better than others. Wood materials for building replicas of the boardwalk in tundra that depicts, shifting from the effects of temperature.

A science section would include an area for making models of the earth (including electronic population LED light representations), water samples from the river, clay for showing layers, and items for creating astronomy representations. With Arduino boards and computers, the options are endless.

Presently, we just found out this week that the Material Request Funds (MRFs) that were placed for this fall were not filled. The situation that was described to us was very unfortunate. I am sure this will slow down the original idea of starting out with 3D printers, since classroom books and supplies will have to be reordered now. But our Site Administrator still wants to clear space(s) for electronic makerspace activities and robotics. This is high on his budget list for this year.

Other funding strategies are to go to the school board and ask for Corporation money to purchase big ticket items like a 3D printer, or a set of electronic kits for middle school science. There are grants for technology and student populations who have a low income. Also, there are stores who will donate some funding or supplies at cost for the maker space. These avenues are all certainly worth looking into.

I did look up the Leapfrog Creatr 3D Printer, 200X270 X230 mm Maximum Build Dimensions 0.05-mm Maximum Resolution; ABS, Laybrick Nylon, PLA, and PVA Filament. What I noted is that this is a name brand, but also that the price range for a 3D printer that can last serve the elementary is wide: $813.79-$2,870.04. I not a range of comparable 3D printers on a chart in class, but not knowing what is best for our students living out in rural areas for long term maintenance, I would defer to discussion with out District Technology Director, Kevin McCalla.

Some Items beginning from youngest to older students; mostly taken from Amazon.com:

Makey Makey – Invention Kit $49.95

LightUp Tesla Kit (Bluetooth Edition $70. to $100.)

Wearable electronics would have to include the purchase and or donation of fabrics if combined with the sewing projects of Kuspuks:

LilyPad Arduino 320 Main Board  21.95

Adafruit Gemma—Miniature Wearable Arduino-like Electronic Platform $10.34

Squishy Circuits Kit—25.00 + 5.49 shipping

The Official Arduino Starter Kit Deluxe Bundle with Make: Getting Started with Arduino: The Open Source Electronics Prototyping…by Arduino  $149.95

One good point about location is that it needs to be spaced properly to avoid being overcrowded, and it needs to be focused on visibility of students to facilitators.

I especially appreciate the word cross-pollination and that the activities might include:

  • Cardboard construction
  • Prototyping
  • Electronics
  • Robotics (like Arduino and Lego Robotics)
  • Digital fabrication
  • Building bicycles and kinec sensor machines (that may include Kinect for XBOX 360)
  • Textiles and sewing

Supplies and rules for safety:

Of course, no makerspace is complete without a well-marked and accessible first-aid kit. I believe one for smaller cuts or scrapes needs to be additional to one that is geared to more serious injuries. Thin gloves need to be available for prevention of the spread of blood borne pathogens. Kits like this need to be in makerspaces, and should be close by to each classroom. This is a point that cannot just be assumed. Also, a fire extinguisher needs to be within quick reach.

Clean up procedures posted and frequently referred to keeps the makerspace area organized and safe. In the Hublinka (2013) article, I see the chant on page 1; “Protect. Double-check. Aim away. Clamp it. Focus. Never play.” This is a good idea for avoiding accidents for younger students, but I think it needs to be accompanied by a chart with changeable pictorial examples.

Sustainability and Updating

 The initial investment will be to spend time and effort cleaning areas out; such as getting rid of encyclopedias and other reference books that have not been used in at least 10 years. Then I believe we need pegboard and tool cabinets with drawers to organize our space. Student ownership will include leaving time for students to put away tools, sweep, and clean up the space daily before the next group uses the makerspace.

Another way to sustain a space is to invite community participation; such as a maker day where parents / community are invited to attend (Martinex & Stager, 2013) and just keep them informed about what is going own at school. Here is a piktochart infographic I made as an example:  https://magic.piktochart.com/output/14919991-maker-day-at-lam-school-november-2016

My own question is how to start organizing the strategies for getting our makerspace off to a great start?

The strategy below reminds me of a jigsaw strategy, but I am thinking it is more like a Reciprocal Teaching program that, while developed for reading can be applied to students in a Makerspace working in pairs or small groups and actually asks themselves “what does this mean?” Metacognition is thinking about what you are thinking—

Metacognition informs you when you encounter something interesting

or substantive; . . . when you reread a passage [in the case of a makerspace,

rethink a failed attempt] with frustration because meaning did not flow to

you at first (Carter, 1997).

Metacognition in reading reminds me of Fadel’s Curriculum Redesign that is named Meta-Learning. At the center is 21st Century Education (which really is student-centered), with knowledge, skills, and character overlapping to “Imagine deeper learning. . .”

Novice makers like novice readers, interact with items and books and experience these according to how “their prior experience is activated” (Carter, 1997). Flexibility in using a variety of strategies derived from the facilitator, peers, or other sources help students add to what they know with the current situation they are presently in.

Here is a strategy model that can create a framework for organizing my teaching which Dr. Pravin Bhatia (I added brackets) I have provided an analogy from Reciprocal Reading from Palenscar to Bhatia’s model provided in a YouTube link in references below:

  • Step 1 Divide students into groups of 6 (or fewer).
  • Step-2 Dividing the subject matter within those groups [or divide students according to their interests and perhaps get them going into different tasks toward a cause].
  • Step-3 Each group reads [discusses] the portion allotted to it (silently read [research online, interview others, draw]; better to read [watch video clips together with audio] than to listen so they get the ideas even when they cant get the words [which gives them visual ideas to go with the words].
  • Step-4 Each group discusses the topic (this discussion is the most important part). [Students bring together what they found out and get started together.] This is peer learning. The teacher goes from table to table group. The teacher clarifies difficulties.
  • Step –5 Each group then in turn, presents it’s portion to the whole class. (communication and analyze skills are learned by doing this)
  • Step-6 All students ask questions from the group. This is where the most analyzing come from..

I believe this model can be a framework for weaving in Makerspace activities, electronics, coding, explaining what worked and what did not work. Teachers and students reflect at the end of the day.

Student ownership of learning is major. Grant Lichtman at TEDxDenverTeachers https://www.youtube.com/watch?v=uzu9RY4tP-A noted this as well. “He also said schools need to be creative, dynamic, permeable, adaptive, relevant, and self-correcting.”

Environmental Atmosphere

Intellectual design space—a growth mindset that promotes a belief that, students can make and create; with both computer and resources around them; individually and together. The growth mindset simply means that students are encouraged to try, not to be concerned with perfection, yet to develop a mentality of trying again, a different way, and being willing to consult peers or experts for ideas and ways of trying a new direction. “Creation is the heart of creativity and is only meaningful when grounded in action – it’s not a feeling, a mindset, or an outcome (Martinez & Stager, p. 80)”

When students walk into my ideal Makerspace area, the room will be organized, inviting, and have areas that invite from a variety of interests. Seymour Paper strikes the balance well: “The role of the teacher is to create the conditions for invention rather than provide ready-made knowledge” (Martinez & Stager, 2013, p. 157).

The areas will be set up to invite both young students and older students. A major area of focus will be incorporating technology into each project at some level. For younger students, they may use MaKey Makey Kickstarter There will be Arduino-based projects for middle school students and up. Some middle school students may start with other types of circuitry projects if they are overly frustrated with Arduino projects (Martinez & Stager).
I will need to model for my students, as well as, help students develop a “Growth Mindset: Positing that talents and abilities can be developed through effort, good teaching, and persistence” (Fadel, p. 4).  https://www.youtube.com/watch?v=MYLDXaqjaDQ&feature=youtu.be

To maintain a strong growth mindset, where students believe in themselves that they can do something new, we as teachers need to take on what it is like for beginners:

This same PDF from Stanford explains that it is important to take on a beginner’s mindset during the activities.

  • Don’t judge.  Observing makers does not include adding one’s own value judgments regarding “their actions, circumstances, decisions, or ‘issues’”
  • Question everything.  A four year old might repeatedly ask “why,” so one way to handle this is to ask “why” back. Look at things from the perspective of the maker.
  • Be truly curious.  Also be filled with wonder, even if the circumstance presents as uncomfortable or familiar.
  • Find patterns.  What are some themes or threads that seamless crossover in interactions between participants or their project making.
  • Really.  As leaders, we plan for events. This may become a deep-rooted and fixed mindset. Be open to what partcipants say—avoid jumping to advise.  dschool.stanford.edu site

Additionally, I the students need to understand that teachers can be open about how they are learning along with the students on many projects. This is teaching by example. Hlubinka, et al. (2013), reminds us that we are all makers. It may be difficult to stay ahead of students, but it will get easier over time—with experience. The advice given on p. 22 is “Let it go. . . . “just be reassured that nobody expects you to be an expert in everything.”

The teaching learning process in the classroom is dynamic; “. . . it flows back and forth from students to teachers” (Barseghian, 2011). Teaching students is dynamic in that while we teach, we also learn.

An important role of the Makerspace Coordinator is that he/she “knows about the usage and safety of the tools in the shop” (Hlubinka, Dougherty, Thomas, Chang, et al., 2013, p. 19). This will need to be learned and practiced prior to running “safety training for all who use the Makerspace” (p. 19).

Learner-Centered Instruction

As far back as Jean Piaget (1896-1980), he reminded teachers to ground teaching in action, not rote memorization; and to begin “with real and material action” (Libow-Martinez & Stager, book, p. 14); and Piaget’s collegue, Seymour Papert, would later frame the educational establishment’s favoring of the former approach over the latter as a battle between instructionism and constructionism” (Libow-Martinez & Stager, book, p. 14).

John Dewey (1859-1952) promoted the interdisciplinary learning based in authentic projects; thus preparing children to observe, problem solve and create methodical procedures for expressing their reasoning. Dewey was concerned with viewing the process of learning from the point of view that children are more than intellectual beings! They are social, emotional, and physical. Modern making can be expressed in the words of John Dewey: “First, that the problem grows out of the conditions of the experience being had in the present, . . . the new facts and new ideas thus obtained become the ground for further experiences in which new problems are presented. The process is a continuous spiral” (Libow-Martinez & Stager, book, p. 14).

Is today’s maker movement based in such theories? In my view, yes! We have so much constructive technology available to us now. We can socially communicate our understanding and build our knowledge just from discussing our reasoning, ideas, and thoughts by way of hands-on technology. Considering this list alone, children and adults alike can communicate to create by using “3D printers, robotics, microprocessors, wearable computers, e-textiles, “smart” materials, and new programming languages” (Libow-Martinez & Stager, article, p. 13). Both formally and informally, any person can use sharing tools and find ideas with instructions online.

Born in 1928, in South Africa, Seymour Papert may inadvertently be the originator of the modern day term, metacognition. He was an advocate of “coercion-free learning environments that inspire children to construct powerful ideas through firsthand experience” (Martinez & Stager, book, p. 18).

The purpose of project-based learning, that includes constructionism as well as constructivism, is to develop learning within context. In one way, this is not new thinking. As the chapter opens up on page 11, it states: “Making things and then making those things better is at the core of humanity” (Martinez & Stager, book). The difference now can be that with the computer age and multi-devices, “New open source microcontrollers, sensors, and interfaces connect the physical world to the digital world” (Martinez & Stager, article, p. 13). We can program computer devices to use as controllers to make connections between the digital and physical worlds.

Constructionism definitely brings old ideas back into the schools in an age that has more opportunity than ever to bridge technology to making and creating for real purposes.

Constructive technology has received its heritage from tinkering! It is constructionism versus Instructionism; and the framework of making, creating, is built upon an interdisciplinary point of view (Martinez & Stager, book, 2013).

Instructionism has the teacher imparting knowledge to students with little consideration for how one subject (discipline) is related to another. The students are receivers of knowledge in this theory of teaching. What is often not considered is that the learner has an internal set of schemata (preformed ways of understanding based on what they already know from prior experiences).

Conclusion

We need to involve students in real making, real technology projects and problem solving for real needs in our world to bring them to an outside view of the world. As educators, Instructionism has ruled for so long, many of us have decided we cannot integrate creativity into our teaching. We can. Perhaps what we are learning from all of this now is that it is purposeful and we are already almost 17 years into the 21st Century. It is time to step off the instructionism ship, and take the necessary risks on the constructive technology and constructionism yacht and launch off into the new horizon with fearless optimism.

References

Barseghian, T. (5 Feb., 2011). Mind/Shift How we will learn. Three trends that define the future of teaching and learning, (pp. 1-8). KQED News, Retrieved on July 5, 2016.   http://ww2.kqed.org/mindshift/2011/02/05/three-trends-that-define-the-future-of-teaching-and-learning/

Bhatia, P., Dr. (November 20, 2014). A teaching technique for the 21st Century. TEDxNagpur: https://www.youtube.com/watch?v=uzu9RY4tP-A

Carter, C. J. (1997). How children learn, 54(6), pp. 64-68 http://www.ascd.org/publications/educational-leadership/mar97/vol54/num06/Why-Reciprocal-Teaching¢.aspx

Cooper, J. (September 30, 2013). Designing a school makerspace. edutopia. J. Cooper, Designer, maker and gardening teacher in Oakland, CA. Cooper picture of construction makerspace retrieved on 7-4-16 at:  http://www.edutopia.org/blog/designing-a-school-makerspace-jennifer-cooper.

Fadel, C. (2016). 21ST century competencies. Independent School, 75(2), pp. 20-26. Here is a YouTube link to a 1 hour 18 minute webinar by

Charles Fadel, published on March 8, 2016: https://www.youtube.com/watch?v=MYLDXaqjaDQ&feature=youtu.be

Makerspace team: including Hlubinka, M., Dougherty, D., Thomas, P., Chang, S., Hoefer, S., Alexander, I., McGuire, D. Vanderwerff, A., Scott, B. and pilot school teachers (Spring 2013). Makerspace Playbook School Edition. Retrieved 7-5-16: http://makered.org/wp-content/uploads/2014/09/Makerspace-Playbook-Feb-2013.pdf. Maker Media—Creative Commons license (pp. 17-31).

Martinez., S. & Stager, G. (2013). Invent To Learn: Making, tinkering, and engineering in the classroom. (Chapter 11) Torrance, CA: Constructing Modern Knowledge Press.

Pollock, M. (2016). Smart tech use for equity. Teaching Tolerance. http://www.eddigest.com.

EDET 678: Funding Proposal–Part II UbD

Aleta May

Understanding by Design Template 2.0

Emerging Technologies 678, with Dr. Lee Graham

August 2016

Funding Proposal to go with detailed report description is attached. This is an example of how using Arduino electronic can lead students to deeper understanding of science, which will transfer to coding that crosses content areas.

Stage 1 Desired Results
ESTABLISHED GOALS

Technology:   Alaska Standards with Content Standards B. A student should be able to use technology to explore ideas, solve problems, and derive meaning.

1)     identify and locate information sources using technology;

2)     choose sourses of information from a variety of media; and

Technology:   Alaska Standards with Content Standards C. A student should be able to use technology to explore ideas, solve problems, and derive meaning.

 

A student who meets the content standard should:

1)     use technology to observe, analyze, interpret, and draw conclusions;

2)     solve problems both individually and with others; and

3)     create new knowledge by evaluating, combining, or extending information using multiple technologies.

Alaska Standards *Content and Performance Standards for Alaska Students Revised March 2006

The information the students learn will transfer to other content areas and more advanced coding skills.

 

Students will be able to independently use their learning to…move on to the next project in Arduino Electronics with less teacher facilitation
Meaning
UNDERSTANDINGS

1.     Students will understand voltage as compared with the analogy of water pressure; and two sides pushing electrons through a circuit.

2.     Students will understand that when resistors are each the same, then the voltage between A & C will be the same.

3.     Students will understand that current is measured by how many circuits flow per second—voltage pulls electrons; current is measured in amps.

4.     Students will understand that Ohm’s Law is what is used to calculate current that is needed to run through the circuit.

<type here>

ESSENTIAL QUESTIONS

1. Why does it matter what volts (the difference in pressure between 2 points in a circuit) are between two points?

 

2.   Amps measure current—or electron flow.What happens when resistance is added?

 

 

3.   When resistance is measured my ohm resistors, what keeps the flow of the current even? Give an example

4.   What does it mean to have volts push electrons through ohms of resistance? Why does this matter?

Acquisition
Students will know basic circuitry, and understand resistance. This will allow them to move on to deeper understandings and more meaningful/engaging projects like parallel circuits.                                                                

 

Students will be skilled at understanding basic circuitry and be ready to change preset computer code; eventually changing coding a lot to create project ideas for the real world.
Stage 2 – Evidence
Evaluative Criteria Assessment Evidence
Students will be evaluated based on participation with a partner or small group, with the use of a rubric. PERFORMANCE TASK(S):

Using an Arduino breadboard, students will demonstrate their understanding of Volts, Amps, and Ohms. They will talk about what they are doing with peers, ask appropriate questions, use research to look up video demonstrations of how to do a project and be able to analyze errors to correct problems with a group/

The breadboard project will judge electrical circuitry success through the use of LED lights and coding that shows the middle volt (B) is 5.0 while A and C volts are equal to A and C OTHER EVIDENCE:

Students will be provided sentence stems to use for explaining what they learned about simple circuits the first week. Each student will be given a different color of pen to show their contribution to the explanation—which may include a drawing.

 

The second week, students will write use the words Volts, Amps and Ohms to explain in writing and or drawings what they learned about resistance.

 

Stage 3 – Learning Plan
 

Students will work on this project over a two week timeframe

With 1 1/2 hours per week:

The first week students will create a   simple circuit

The second week they will to create a more complex circuit using a battery box, where they will be given time to understand the circuit and resistance in two different ways.   Students will watch a non polarized resistor that allows flow in the current to go either way, and light up an LED when electrons lose energy.

Volts, Amps, and Ohms, students will watch video clips together in small groups that explain

 

 

 

EDET 678 Week 12 Funding Proposal Final Project–Part I (see UbD for Part II)

Aleta May

EDED 678 Emerging Technologies

Shared District and School visToday I wrote an email requesting that I be allowed to attend the following District Wide In Service (DWIS) trainings. Usually there are many required special education trainings at these DWIS, I received special latitude as a half time special education teacher to attend technology trainings. To me, this states our school’s vision:

Robert,

For the DWIS I am interested in taking Robotics training, ALEKS (math) and STEM.  I believe Ashley Crace (Sped director) will be flexible with us on my receiving alternative trainings, since Dan is the primary sped teacher at our site.  She sounded flexible as well.

Aleta

Robert’s reply was:

Since your electives keep our school vision in mind, I’d say you picked some great classes.

Sent from my iPhone

For the Lower Kuskokwim School district, there is now a 2016-2019 Technology Plan Timeline at that has been added to the recently expired Technology Plan: http://www.lksd.org/lksd/tai/LKSD%202013-2016%20Official%20Technology%20Plan-1.pdf

This has been embedded within the LKSD Educational Technology Plan dated July 2013-June 2016. The categories are outlined below:

  • Goals, Standards, and Strategies;
  1. Internet Access–evaluation of Network District Technology needs (Bandwidth). TAI Budget
  2. Continue E-rate Process (contract Expires June 30, 2017)
  3. VTC details. (TAI Budget—General Fund)
  4. PD (TAI Budget—General Fund)
  • Technology Integration
  • Access (TAI / Site Budgets)
  • Professional Development
  • Assessment
  • skipped F
  • CIPA

Evaluating Innovation

Under each heading, there are details that have been addressed, and will continue to develop over time. I believe each and every category listed above affects buy-in to my proposed emerging technologies ideas for our schools. More specifically, we need the most improved internet access possible, technology needs to be integrated within interdisciplinary content areas, and I noticed that several areas listed above specify which categories funding is likely to come from for our school in particular.

The kits and equipment, kits, and supplies for each of electronic sewing, Tesla Bluetooth Circuitry, and Discover Circuits + Arduino each range in cost between $70. to $100. The products may be shared by students and items may be gradually added to and replaced

Connecting this Vision with My Vision for Embedding Emerging Technologies into the Primary through Middle School Classes:

I searched through our District Technology Curriculum and found several matches to emerging technologies I am interested in.

In Phase 2 of the Technology Curriculum, http://www.lksd.org/lksd/TAI/Tec_Curriculum.html

Under Ethics E3 it is stated that students should “Work cooperatively to share resources & networked information. This is under performance Indicator SS-Social Studies and Tech Standard C.2.” The connection I find for my proposed Arduino project (middle school and up) and Tesla Circuitry Kit for younger students, as well as, using Aruino Flora LED lights for sewing/art, is that students will work together grouped by interest. Phase 8 includes Continuing to learn basics of Internet:

    Identify different types of hyperlinks, anchors and URLs A.1. & A.2.
    Use search engines (e.g. Alta Vista) using appropriate syntax A.2., B.1. & B.2.
    Use Sherlock (Mac) or browser (Netscape/Microsoft) search tool to locate information on a specific web site A.2., B.1. & B.2.
    Use Boolean search strategies to narrow Internet searches A.1 & A.2. A.2., B.1. & B.2.
    Print specific web pages with teacher guidance A.2., B.1. & B.2.
Participate in at least one telecommunications project (either Apple Mail or an approved email system or web) W A.2., B.1. & B.2.

In Phase 8 of our Technology Curriculum Plan, I view using Arduino Flora sewing projects as part of teaching students to add Arts to Science, Technology, Engineering, Arts, and Mathematics (STEAM). Students can learn how basic circuitry works by using conductive tread to sew into fabrics and add LED light designs. This is student centered in that some students are much more likely to have a desire to engage in learning where art and fashion are involved.

Meanwhile, there are so many tools already available to educators online, what is really needed are models that “connect curriculum to life outside the classroom . . . real-world application that is experimentation . . . and opportunities for vision and leadership” (Johnson, et. al., p. 6). My favorite is STEAM. The A in STEAM stands for arts+. Of course, teachers need support in “leveraging technology to connect teachers and students inside and outside of the classroom” (Johnson, et. al., p. 7).

There are some students who may be attracted to programming and electronics by using it for art and clothing, who would otherwise never be interested in electrical circuitry or computer programming. Mellis, (2014) Leah Buechley created the LilyPad Arduino.

This quote really stood out to me: “We aimed to design projects that are fun and whimsical but also complex and challenging. We assume that our readers have no previous experience, but limitless ability.” The projects listed for children in this article sound exactly like what I would like to try with our students.

As I looked over a FLORA Ardino Compatable Wearable platform, then read down to where it suggested a mico-lipo charger to reduce fire risks (especially with fabric), my first reaction is that they should just raise the price and put this into the set. When compared to the Lilypad, the FLORA is lighter, has bigger pads and the with larger holes that are easy to use with alligator clips (which many prefer to use). It is a Field Transmitter that now works with Arduino devices (and others) that have alligator clips. (7/13/2016).

The light up and flash skirt (with LEDs) is activated by the FLORA motion sensor. It is connected to with pixels through conductive thread that is all connected to the FLORA mainboard. The code can be adjusted for sensitivity to motion by changing one number. The battery is removed to hand-wash clothing. Air-dry all the way before adding the battery back in. This looks very popular for prom night: https://www.adafruit.com/products/659

However, incorporating emerging technologies (ET) and an instructional design approach with a constructivism paradigm is disruptive to traditional education. Therefore, stronger research support for validating change in educational practices is needed (Veletsianos, 2010). Further, we need to consider what innovations are sustainable. Contextual factors need to determine what works for the students. In order to promote reform, there needs to be change that is deep enough to alter how teachers view their roles, change needs to be sustainable over time, cross over to other classrooms (especially other subject areas) and teachers need to assume ownership of their innovative teaching pedagogy (Herro, 2016).

How does the electronic circuitry and more advanced Arduino projects will further the vision of the school?

For students 8+ years, there are kits listed at $99.99. I purchased mine on sale for 69.99. These kits are durable and reusable. Students could work in rotating groups to use kits, so that it is more cost effective. This is a LightUp Tesla Kit (Bluetooth Edition) that gradually increases the difficulty of students understanding basic circuits, all the way to beginning to write code for the microcontroller. This kit uses magnets to connect pieces for a variety of projects and includes a learning app for guidance. The magnetic circuit blocks snap together and with an iPad app (LightUp Tesla Kit Bluetooth Edition

www.lightup.io/app) that is included, students may hover over the connections to see the visual flow of circuitry (like x-ray vision) to not how it works. An Arduino Kit, alternatively, uses a breadboard with positive / negative wires and LED lights with wire legs that would be difficult for younger students to use. Here is a site where a starter kit called Discover Arduino Bundle may be purchased for 81.99. There are smaller kits available. The kits are well organized with pieces in packets and there are online resources with an electronics group you can join. http://learn.sparklelabs.com/electronicsgroup http://learn.sparklelabs.com/electronics

Lessons include 3 to 4 minute video clips that explain the concepts that build background knowledge—For example: As electrons and protons transfer through a conductor, they can shake electrons around as they move from high pressure through the conductor. This can make light; electrical waves; magnetic waves as it moves through the conductor. Then there are tutorials students may watch and review for how to make the electrical connections with the computer connected by USB cord, where students begin to learn how to use computer coding. Here is an example of a tutorial: http://learn.sparklelabs.com/electronics/2010/10/22/volts-amps-and-ohms/

As I teach using Arduino and other circuitry materials, according to the updated policies listed below, I will have permission to have students looking up information on their personally owned devices, such as video clips about how to complete the coding within an Arduino project:

Meanwhile, it will be important that stakeholders be convinced that middle school to high school students are based on five qualities and behaviors “for fostering a constructionist learning environment:

~~Keep it brief, relevant, and open;

~~Model the maker mindset;

~~Act like a scientist;

~~Reward curiosity and passion with rigor; and

~~Keep it safe   (welcoming, friendly space that is as free as possible from the pressures of time . . . students participate in their own assessment, allowing them to see its value and to gain literacy and autonomy through it” (Flores, 2016, pp. 17-18).

The cost of the Discover Electronics + Arduino Kit that can be obtained from timberdoodle.com and is connected to sparklabs.

Students need to learn basic electronic skills; such as coding, electrical circuitry as it relates to content areas while using the computer in ways other than blended learning programs and test taking. To compete in the 21st Century, our students need to see how, for example, using an Arduino kit with sensors they connect, then touch affects a baseline and comparison body temperature reading on the computer screen; as well as how to solve the problem of adjusting the code in the program to match the ambient air temperature in the room to be able to see LED lights light up when the touch or not touch sensors.

This technology will further this goal by doing the following for students: Presently, coding is a part of the many apps we use daily, and the uses include “thermostats, cars and just about every device we own” (Sehringer, M., 2016, p. 2). . Coding coursework prepares students for college-level courses and jobs (Shueh, 2014). Shueh, J. (2014, 25 June). Advocacy groups push coding as a core curriculum: Students must learn how to create technology to prepare for a computer-driven workforce.

Since a student’s day can be so filled with required curriculum standards and coursework, (Guest Author, 2015), the answer is to hybrid courses—“replace your math class with a math/CS hybrid class” (p. 2). We are already going this route when we declare that every teacher is a reading/writing teacher in every subject area. I agree. I am opposed to not adding coding into the curriculum after reading all the literature as to how much a part of our students’ lives computer science really is. Therefore, the cons are impossible for me to find.

I am proposing starting a low-key makerspace to bring in emerging technologies across primary through at least middle school grade levels

Flores (2016) noted that Vygotsky (1978), “introduced the concept of allowing learners to step beyond themselves” and to use each other as a resource to find this ceiling by letting students bump into the wall and then figure out how to get unstuck. The key would be to balance frustration that is productive with asking students leading questions that may get them to think about what to try next instead.

These are taken directly from the LKSD Policy:

Personally Owned Devices

Students may use personally owned devices (including laptops, tablets, smartphones, and cell phones) at any time during school hours—unless such use interferes with the delivery of instruction by a teacher or staff or creates a disturbance in the educational environment. Any misuse of personally owned devices may result in disciplinary action. Therefore, proper netiquette and adherence to the acceptable use policy should always be used. In some cases, a separate network may be provided for personally owned devices.

  1. Examples of Acceptable Use

I will:

    • Use school technologies for school-related activities and research.
    • Follow the same guidelines for respectful, responsible behavior online that I am expected to follow offline.
    • Treat school resources carefully, and alert staff if there is any problem with their operation.
    • Encourage positive, constructive discussion if allowed to use communicative or collaborative technologies.
    • Alert a teacher or other staff member if I see threatening/bullying, inappropriate, or harmful content (images, messages, posts) online.
    • Use school technologies at appropriate times, in approved places, for educational pursuits only.
    • Cite sources when using online sites and resources for research; ensure there is no copyright infringement.
    • Recognize that use of school technologies is a privilege and treat it as such.
    • Be cautious to protect the safety of others and myself. (p. 13)

Students need to have this digital citizenship taught to them. If they do not have an opportunity to be involved in using a variety of technologies, whether from school or brought from home, they may find out the hard way in the workplace.

Conclusion

 As a school district, we need to change “the culture of instruction” . . . “Technology does not change the cognitive rules for learning, but offers ways to better deliver the learning experience” (Hess, et. al., p.9). Our district (as well as many others across Alaska) needs to use technology in ways other than testing and pre-made programs. For example, I do use Lexia for reading, Dreambox for math, and we have Read 180 that is set up to be a blended learning environment with built in rotations. What we need to do district-wide (and perhaps beginning at our school) is strongly emphasized integrating technology into every subject area and use an interdisciplinary approach. I could be teaching science and use a breadboard not only to teach electronic circuitry, but to also calculate the difference between my body temperature in Celsius with other students, and we could discuss ambient room temperature and how that affects what we are seeing on the computer screen from the code that was copy and pasted in and then adjusted. Further, our students need to learn how to use coding—this may include gaming, which may in turn involve math or story telling.

The outlook for available funding for interdisciplinary uses of technology are very positive, since schools have been recognized as having students who are engaged in purposeful learning will be students who are prepared for the job force and be motivated to graduate. The E-Rate program was developed by federal policymakers; this program is called the Telecommunications Act of 1996, and “is a discount on telecommunications services for schools and libraries “ and it is “overseen by the Federal Communications Commission (FCC)” (Hess, Hochleitner & Saxberg, 2013). This program is up for expansion of provisions for high-speed Internet to 99 percent of America’s students by 2017” (Hess, et. al., p. 2). President Obama and his education team calls this “ConnectED.” This is major for our school district!! The higher speed of internet we have, the more the equipment we already has can be effectively used to make available courses and/or tutoring they need.

References

 Adafruit—FLORA – Wearable electronic platform: Arduino-compatible – v3. Flora arduino microcircuits (projects at the bottom):

Qi, J (2012). Interactive light painting: Pu gong ying tu (dandelion painting). Retrieved 7-17-2016 at: https://vimeo.com/40904471 Sparkle skirt with flora motion sensor: https://www.adafruit.com/products/659

Buechley, L. (November 15, 2012). Leah Buechley: How to “sketch” with electronics (Sketching Electronics)  Retrieved 7-17-2016 at: https://www.youtube.com/watch?v=vTBp0Z5GPeITed Talks 

Flores, C. (2016). Fostering a constructionist learning environment: The qualities of a maker educator. In P. Blikstein, S. L. Martinez, & H. A. Pang. Meaningful making: Projects and inspirations for fab labs and makerspaces.

 Hess, F., Hochleitner, T., Saxberg, B. (2013). E-Rate, education technology, and

 3 Reasons coding should be a core subject by Guest Author, September, 29, 2015 From Getting Smart. Retrieved 6-20-16  http://gettingsmart.com/2015/09/3-reasons-coding-should-be-a-core-subject/

Herro, D. (2015). Sustainable innovations: Bringing digital media and emerging technologies to the classroom. Theory into Practice, 54:2, 117-127.

Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). NMC Horizon Report: 2015 K-12 Edition. Austin, Texas: The New Media Consortium.

LKSD Educational Technology Plan dated July 2013-June 2016: http://www.lksd.org/lksd/tai/LKSD%202013-2016%20Official%20Technology%20Plan-1.pdf

Arduino kits: http://sparklelabs.com/index_store.php

Sehringer, Mendix WIRED Retrieved 6-20-16:  http://www.wired.com/insights/2015/02/should-we-really-try-to-teach-everyone-to-code/

Timberdoodle.com– LightUp Tesla Kit Bluetooth Edition:  www.lightup.io/app

Veletsianos, G. E-learning, Ideas open sharing work. Posted November 18th, 2015. In G. Velesianos (Ed), (2010). A definition of emerging technologies for education (pp. 3-22). Edmonton, AB: Athabasca University Press.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (14th ed.). Cambridge, MA: Harvard University Press. (Reference found in Malpica article)

 

EDET677 Reflection–EQ: How have you, and will you, continue to “Learn the 21st Century” and allow your students this experience in your classroom?

Aleta May

Week 11 Reflection EDET677

Best practice strategy instruction is part of making, creating, and coding. Subjects are interdisciplinary. And known strategies that work for the teacher as the facilitator and mini-lesson explicit instructor may and should be combined with creative making (like art with LEDs; and building prototypes about what they are reading) to express learning.

Here is a video clip about a high school that has combined reading instruction with history and is using a strategy approach called reciprocal teaching in high school—this was posted only 3 months ago:

https://vimeo.com/165190419

Through designated roles in the reading process, one student reads, another summarizes, other questions, while another predicts what’s going on next make sense of reading. They rotate through those roles. They benefit from the input of other students. Pre-reading with ideas, themes to build schema. The teacher rotates to each group. They usually need the most instruction in summarizing. They use sentence stems.

I had found a jigsaw strategy video clip for my initial post and thought about how this could apply to some of the ideas of the makerspace and working together in a group. As I now add into my reflection the strategy of reciprocal teaching, I can see many ways the structure of best practice protocols can and should be woven together with students working in small groups to help and learn from each other in small groups to begin structured working together in areas such as coding. One student may set up the Arduino, while another explains the instructions, and another adjust the code as needed and another takes notes on their findings. Then these roles could be summarized, and students could try on different roles.

Comments from classmates from my post:

josies677blog says:  July 31, 2016 at 1:58 pm (Edit)

Altea,

Great information on your post. Using your students as a resource to say updated is a great avenue that I did not think of. I agree that we need to exercise our brains instead of using so many automated tools. Your strategy model from Dr. Pravin Bhatia did provide good in depth steps on how to organize teaching.

I loved it when the brain games became a trend. We use these games and other board games at our house for family bonding time. It is a great way to exercise our brains.

Josie

aletakmay says:  July 31, 2016 at 7:36 pm (Edit)

Josie,

I love hearing about your family bonding time and how you use brain games. Today our daughter is getting married, and we will have 4 children living in our house here in Oregon; 2 from our daughter and 2 from our new son I am very inspired from what you said to think about following your lead when we come back here this winter. Our grandkids range from 8 (in Sept) through 13. We also have students who spend a lot of time in the resource room with husband at school. If you could give me the names of brain games or ideas, that would be much appreciated.

Aleta

Sara Lucas says:  August 1, 2016 at 3:35 am (Edit)

You found some really great videos to add to your blog. I like how they address the topic that the world is changing and we need to evolve with it. We can’t stay stuck in the past. I like how in the video Andreas Schleicher makes the point that we don’t need to try to teach kids everything because Google already knows the answer. This made me chuckle. Rather trying to cram students brains full of information, we need to teach kids to apply their knowledge in new situations. The strategy by Dr. Pravin Bhatia is a great strategy. It sounds like what I have heard of as jigsaw. I didn’t think about using this in a makerspace, but it does sound like it would be perfect to wrap up students thoughts and share what they are learning.

Sara, I’m glad you enjoyed watching the video! It is so important that we teach kids how to access resources to teach themselves. It is amazing that we can speak into our phones or type a question into Internet/Google and find the answers! I believe there are good reasons to memorize, but to memorize names/dates/etc. In history, social studies and science seem irrelevant when we can simply access that information. It is much more important that we teach students about finding quality, reliable sources and comparing these to each other. It is also important to teach them to seek alternative perspectives.

My posts to classmates:

Josie,

It is so true that technology spans a broad spectrum—from pencil to high-tech tablets. I still have a hard time thinking about a pencil as technology, yet it is a tool used for learning—thinking, drawing, problem-solving.

With so many options out there on the Internet for teachers, I just thought about how it may help us to take notes as to how we go through the process of narrowing down our choices for what is best for our students and selecting this. Then we may share this process with our students as they face the same issues. This reminds me of using think-alouds to allow students to learn from our processes we go through to comprehend text. We can think-aloud a recent process we went through to select an appropriate lesson for our students on a computer venue or lesson.

Aleta

Kate,

What a perfect list from Tsisana Palmer (2015). Thank you for sharing this.

I connected with the quote you placed in your blog from Dale Carnegie. Especially that “Inaction breeds doubt and fear. Action breeds confidence and courage.” This should be a motto on my emails.

When you stated that when students know more than we do, this allows us to shine, I thought to myself about how true this is. There seems to be a residual mindset among some students that if a teacher doesn’t know enough about a topic, they are no longer considered to be worthy of their time or respect. We need to change this. And like you said, there will “be times when we all struggle to figure something out.” Thank you for your insights!

Aleta

Amy,

It does seem to be very overwhelming to keep up with the enormity of the tasks and demands on instructional time; especially when we are asked to take on so many different things besides our position we actually contracted to do. Staying current through Twitter and Edutopia sound like a great idea.

Focusing on a Growth Mindset, especially in the fall, will set students up to your expectations; such as, they can and will do what is right.

The 5J approach you introduced is excellent advice! I especially like the one called just enough, the focus on gradually improving, becoming comfortable with new technologies and building confidence over practice sounds like a great focus that applies to the job-related, just in time, just in case, and just try it applications.

It seems to me that often we as professional educators are evaluated and rewarded in such ways as to compete, by convincing others and promoting ourselves as the most professional, confident educators; as if we are continually being interviewed. In reality, all of us need to be willing to grow, to help each other, and to just be willing to understand that we all have our own strengths—as well as all needing to grow. Educators need a Growth Mindset as well!

Aleta

References 

Reciprocal teaching in high school. WestEd iStudies 3 months ago. Retrieved on August 1st at: https://vimeo.com/165190419

 

 

EDET678: Reflection for Week 11

Aleta May

Reflection for EDET678 Emerging Technologies Week 11

Essential question: What specific policies will help your district prepare student for current and emerging technology use? How can you help lead your district in creating these policies?

At this site, our school district has a list of forms for acceptable use policies (AUP): http://www.lksd.org/technology/aup.html

This particular AUP for students seems to have been recently been updated and more detailed since the last winter semester when I reviewed these. I want to find the version I was shown at that time and compare them next; especially since our Technology Assisted Instruction (TAI) Director had told me the policies were being updated for the 2016/17 school year at that time. Here is the current link:  http://www.lksd.org/technology/aup/Acceptable%20Use%20Policy-%20Students.pdf

Gerald made the statement that “it starts with a motivated teacher!” I agree. Motivation needs to come with support as well. This comes in many forms. Policies are a great way to start.

The Learning and Technology Policy Framework from Canada seems to be a great fit for our state of Alaska as well. Although each of the 5 policy directions has many details under each category, each school district will need to go through these with a careful eye for how and what applies to their district specifically. This may involve a few additions, deletions and rephrasing in order to make it work. Every district, and even each school, has unique qualities to consider.

I really like the way some school districts have made video training clips for their district’s AUP and divided these further into videos for teachers and other staff members and a separate one for students.

References

Josie,

As I read what you wrote in your post: “School policies should be written in an easy format to comprehend,” I thought about how I found acceptable use policies (AUP) for teachers and other YouTube clips for students.

The balance between keeping students secure and not overly restricting the use of a variety of devices and Internet resources is difficult, but necessary if we are to move into the 21st Century technology skills use for our students.

Your post looks so clear and the way you applied each section of the k12.blueprint.com to your school district helped me think more in depth about how our school (and district policy) should look.

Aleta

Sarah,

I agree that it is so important to follow the district policies daily. At certain times of the school year, it is easy to relax on following these standards. We need to be vigilant on following policy and review these as a staff and with our students across the school year.

We do need to teach students to be responsible users of the Internet and follow acceptable use policy (AUP). Although it is not necessarily the easiest road to take, it is an important one. There will be students who continually test the system, and abuse it. Does this mean we should restrict everyone’s access? Though it may be difficult at times to locate the specific system abusers, we need to continually find ways to supervise students, and have a step plan for consequences and how we will solve the issue(s). One way is to have a point person in the school who can be talked to by students, anonymously, about issues such as cyberbullying and hacking around the schools safety net system.

Thank you for such a great post!

Aleta

Gerald,

Equitable access to broadband is so important. In our school, it seems to me the best way for this is to improve our wifi access in the classrooms and to continue to increase to higher speed access, especially for high demand times. Student resources in my mind include not only devices to use, but human resources for using computers and iPads in ways never before considered in our school (Arduino and electronic coding training, as well as creative and artistic applications).

Blended distance learning in our school needs a designated person to oversee student progress. When this is added to classroom teachers in middle through high school, it is like teaching two classes at one time. The problem with this for our secondary teachers is that they are already teaching multiple subject areas throughout their day. Until we reach the point of interdisciplinary instruction, adding to the plate of our upper level teachers is too much to ask. Maybe I will be the designated person; who knows. Each year is a bit different for me.

Aleta