EDET 678: Funding Proposal–Part II UbD

Aleta May

Understanding by Design Template 2.0

Emerging Technologies 678, with Dr. Lee Graham

August 2016

Funding Proposal to go with detailed report description is attached. This is an example of how using Arduino electronic can lead students to deeper understanding of science, which will transfer to coding that crosses content areas.

Stage 1 Desired Results
ESTABLISHED GOALS

Technology:   Alaska Standards with Content Standards B. A student should be able to use technology to explore ideas, solve problems, and derive meaning.

1)     identify and locate information sources using technology;

2)     choose sourses of information from a variety of media; and

Technology:   Alaska Standards with Content Standards C. A student should be able to use technology to explore ideas, solve problems, and derive meaning.

 

A student who meets the content standard should:

1)     use technology to observe, analyze, interpret, and draw conclusions;

2)     solve problems both individually and with others; and

3)     create new knowledge by evaluating, combining, or extending information using multiple technologies.

Alaska Standards *Content and Performance Standards for Alaska Students Revised March 2006

The information the students learn will transfer to other content areas and more advanced coding skills.

 

Students will be able to independently use their learning to…move on to the next project in Arduino Electronics with less teacher facilitation
Meaning
UNDERSTANDINGS

1.     Students will understand voltage as compared with the analogy of water pressure; and two sides pushing electrons through a circuit.

2.     Students will understand that when resistors are each the same, then the voltage between A & C will be the same.

3.     Students will understand that current is measured by how many circuits flow per second—voltage pulls electrons; current is measured in amps.

4.     Students will understand that Ohm’s Law is what is used to calculate current that is needed to run through the circuit.

<type here>

ESSENTIAL QUESTIONS

1. Why does it matter what volts (the difference in pressure between 2 points in a circuit) are between two points?

 

2.   Amps measure current—or electron flow.What happens when resistance is added?

 

 

3.   When resistance is measured my ohm resistors, what keeps the flow of the current even? Give an example

4.   What does it mean to have volts push electrons through ohms of resistance? Why does this matter?

Acquisition
Students will know basic circuitry, and understand resistance. This will allow them to move on to deeper understandings and more meaningful/engaging projects like parallel circuits.                                                                

 

Students will be skilled at understanding basic circuitry and be ready to change preset computer code; eventually changing coding a lot to create project ideas for the real world.
Stage 2 – Evidence
Evaluative Criteria Assessment Evidence
Students will be evaluated based on participation with a partner or small group, with the use of a rubric. PERFORMANCE TASK(S):

Using an Arduino breadboard, students will demonstrate their understanding of Volts, Amps, and Ohms. They will talk about what they are doing with peers, ask appropriate questions, use research to look up video demonstrations of how to do a project and be able to analyze errors to correct problems with a group/

The breadboard project will judge electrical circuitry success through the use of LED lights and coding that shows the middle volt (B) is 5.0 while A and C volts are equal to A and C OTHER EVIDENCE:

Students will be provided sentence stems to use for explaining what they learned about simple circuits the first week. Each student will be given a different color of pen to show their contribution to the explanation—which may include a drawing.

 

The second week, students will write use the words Volts, Amps and Ohms to explain in writing and or drawings what they learned about resistance.

 

Stage 3 – Learning Plan
 

Students will work on this project over a two week timeframe

With 1 1/2 hours per week:

The first week students will create a   simple circuit

The second week they will to create a more complex circuit using a battery box, where they will be given time to understand the circuit and resistance in two different ways.   Students will watch a non polarized resistor that allows flow in the current to go either way, and light up an LED when electrons lose energy.

Volts, Amps, and Ohms, students will watch video clips together in small groups that explain

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s